Environmental Education & Children’s Environmental Orientations: Evaluating Program Effects by Gender, Age & Ethnicity

February 23, 2009
Lincoln R. Larson
Gary T. Green
Steven B. Castleberry
University of Georgia
The Problem

- *Last Child in the Woods*
 - Nature-deficit Disorder
- No Child Left Inside Act
- Growing emphasis on EE…
 - Is it working?
 - How do we know?
Children’s Environmental Orientations

- Gender effect?
 - Boys know more? Girls care more?

- Age effect?
 - From anthropocentric to ecocentric?

- Ethnicity effect?
 - Interest/concern differ by race/ethnicity?
Objectives

1. Compare environmental orientations of children across gender, age & ethnic groups

2. Evaluate the effect of an EE program on children’s environmental orientations
Methods

- Quasi-experimental:
 - EE Treatment Group (Summer Camps)
 - Control Group (After-school Programs)

- Pre-test, post-test design:
 - Environmental orientations assessed using CEPS (Children’s Environmental Perceptions Scale)
CEPS (Children’s Environmental Perceptions Scale)

- Instrument reliable & valid across diverse audiences
- 3 Major Components:
 - Eco-Affinity
 - Eco-Awareness
 - Environmental Knowledge

<table>
<thead>
<tr>
<th>1. I like to learn about plants and animals.</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Not Sure</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>🔴🔴</td>
<td>🔴</td>
<td>?</td>
<td>🔵</td>
<td>🔵🔵</td>
</tr>
</tbody>
</table>
Participants (N = 190)

- Age:
 - 6 or 7: 8%
 - 8 or 9: 39%
 - 10 or 11: 48%
 - 12 or 13: 5%

- Ethnicity:
 - 51% African-American
 - 46% White
 - 3% Hispanic

- Gender:
 - 52.6% male
 - 47.4% female

Note: 147 children completed all items on the pre-test & post-test.
1. Compare environmental orientations of children across gender, age & ethnic groups.

Statistical Analysis:

- Mann-Whitney U Test
- Kruskal-Wallis Test
Gender Effect: Mann-Whitney U test

<table>
<thead>
<tr>
<th>Scale</th>
<th>n</th>
<th>Z</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eco-Affinity</td>
<td>180</td>
<td>-0.75</td>
<td>0.453</td>
</tr>
<tr>
<td>Eco-Awareness</td>
<td>182</td>
<td>0.00</td>
<td>1.000</td>
</tr>
<tr>
<td>Environmental Knowledge</td>
<td>185</td>
<td>-1.34</td>
<td>0.181</td>
</tr>
</tbody>
</table>

Environmental Orientations (± 95% CI) by Gender
Age Effect: Kruskal-Wallis Test

<table>
<thead>
<tr>
<th>Scale</th>
<th>n</th>
<th>χ^2</th>
<th>p</th>
<th>η^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eco-Affinity</td>
<td>180</td>
<td>24.67</td>
<td>< 0.001</td>
<td>0.14</td>
</tr>
<tr>
<td>Eco-Awareness</td>
<td>182</td>
<td>1.94</td>
<td>0.586</td>
<td>0.01</td>
</tr>
<tr>
<td>Environmental Knowledge</td>
<td>185</td>
<td>11.24</td>
<td>0.010</td>
<td>0.06</td>
</tr>
</tbody>
</table>

The table above shows the results of the Kruskal-Wallis Test for different scales by age group. The test was conducted to determine if there are significant differences in baseline mean eco-affinity scores across different age groups.

The graph below illustrates the baseline mean eco-affinity scores by age group, along with 95% confidence intervals (CI). The scores decrease as age increases, indicating a significant age effect on eco-affinity.
Ethnicity Effect: Kruskal-Wallis Test

<table>
<thead>
<tr>
<th>Scale</th>
<th>n</th>
<th>χ^2</th>
<th>p</th>
<th>η^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eco-Affinity</td>
<td>180</td>
<td>1.14</td>
<td>0.566</td>
<td>0.01</td>
</tr>
<tr>
<td>Eco-Awareness</td>
<td>182</td>
<td>16.88</td>
<td>< 0.001</td>
<td>0.09</td>
</tr>
<tr>
<td>Environmental Knowledge</td>
<td>185</td>
<td>43.22</td>
<td>< 0.001</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Eco-Awareness (± 95% CI) by Ethnicity

Environmental Knowledge (± 95% CI) by Ethnicity
Baseline Environmental Orientations: Conclusions

- No evidence of gender differences
- Eco-affinity lower in older children than younger children
- Eco-awareness/content knowledge lower in African-American children than white children
2. Evaluate the effect of an EE program on children’s environmental orientations.

Statistical Analysis:
- ANCOVA
EE Treatment

- 5 day Eco-Camp (9 am to 3 pm)
- Based on State Botanical Garden’s Garden Earth Naturalist (GEN) Curriculum
- **Activities:** hikes, games, animal encounters, field trips, crafts, puppet shows
Main Effects: ANCOVA

<table>
<thead>
<tr>
<th>Scale</th>
<th>df_{num}</th>
<th>df_{den}</th>
<th>F</th>
<th>p</th>
<th>η^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eco-Affinity</td>
<td>1</td>
<td>126</td>
<td>7.20</td>
<td>0.008</td>
<td>0.03</td>
</tr>
<tr>
<td>Eco-Awareness</td>
<td>1</td>
<td>130</td>
<td>0.63</td>
<td>0.037</td>
<td>0.02</td>
</tr>
<tr>
<td>Environmental Knowledge</td>
<td>1</td>
<td>134</td>
<td>10.92</td>
<td>0.001</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Adjusted Mean Difference Scores (± 95% CI) for Each Scale

- Eco-Affinity: -0.5 ± 0.0
- Eco-Awareness: 0.0 ± 0.0
- Environmental Knowledge: 0.5 ± 0.0

Dependent variable: adjusted mean post-test score

Independent variable: treatment or control

Covariate: mean pre-test score
Interactions: ANCOVA

- **Treatment * Age**
 - Eco-Affinity:
 - $F(3, 126) = 1.47$, $p = 0.226$, $\eta^2 = 0.02$
 - Adjusted Mean Differences: 6 & 7 year-olds = 0.30, 8 & 9 year-olds = 0.08, 10 & 11 year-olds = 0.25, 12 & 13 year-olds = 1.29

- **Treatment * Gender**
 - Eco-Awareness:
 - $F(1, 130) = 2.09$, $p = 0.151$, $\eta^2 = 0.01$
 - Adjusted Mean Differences: Boys = 0.37, Girls = 0.18

- **Treatment * Ethnicity**
 - Environmental Knowledge:
 - $F(1, 134) = 1.18$, $p = 0.280$, $\eta^2 = 0.01$
 - Adjusted Mean Differences: African-Americans = 1.35, Whites = 0.98
Conclusions

- EE program had positive effect on eco-affinity, eco-awareness, & environmental knowledge
- Interactions (EE*demographic variables) warrant further investigation
Implications

- Evaluate non-formal EE programs to:
 - Address age-related decline in eco-affinity
 - Confront eco-awareness & environmental knowledge gaps in minority populations
 - Identify specific program elements that are most effective

- Extend analysis to formal EE curricula
Special Thanks To...

State Botanical Garden of Georgia

Oconee County 4-H

ACC Leisure Services

The University of Georgia

Clarke County School District